Research & Development

The Research and Development Unit offers complete and innovative solutions in the field of parallel bioanalysis by applying spot based analytical technologies utilizing the company know-how in the fields of microarrays, assays development, pico- and nanoliter handling, surface functionalization, array imaging and data analysis.

SCIENION is committed to R&D with the aim of working with our customers to develop innovative products.

Partnerships play an important role in our activities and we value establishing and maintaining strong relationships with our contacts within the scientific, academic and business communities. We are engaged in several joint research projects at national and international levels, some of them publicly funded.

 

 

Below are listed some of the current projects in which we are involved.

  • cryoPOC

    cryoPOC: Capillary driven Platform for Multiplex Protein Analytics
    BMBF KMU-innovativ Biotechnologie – Biochance


    Objective:
    Point-of-Care (PoC) systems enable fast, easy to use and cost-efficient diagnostics on-site. These systems should be compact and preferably independent of peripheral instruments. Prominent examples include paper-based lateral flow devices (LFD), like the well-established pregnancy test. The paper is used to drive the liquid flow without pumps via capillary action. However, the transfer of other immunodiagnostic assays to LFD is still lagging behind. One major issue is the comparably high limit of detection, as compared to standard methods (like ELISA) performed in central laboratories. Main reasons for this are (among others) unspecific adsorption of analyte to the paper fibers and light scattering due to the paper’s optical properties.
    The cryoPOC consortium is therefore aiming at a capillary driven platform for multiplex protein analytics, where the paper is replaced by an innovative concept including a capillary and porous polymer materials. The capillary will include a series of separate segments with different capture molecules and controls; together with a handheld device for fluorescence detection this platform will enable two-color detection and analysis of multiplex immunoassays directly at the point of need.


    Duration: 07/2016 – 06/2019


    Involved Partners:

  • CardioSAVE

    CardioSAVE

    Objective:
    This project aims to develop a novel early stage prognostic test for clinical outcome in acute myocardial infarction (AMI) patients receiving percutaneous coronary intervention (PCI). This novel test will also be able to monitor treatment response. The tool will be based on (i) a unique set of biomarkers recently discovered by the cardiovascular research group at the Luxembourg Hospital center and for which Firalis controls the intellectual property and (ii) a novel set of markers to be selected using transcriptomic and protein discovery approaches (iii) Biomarkers candidates from another ongoing study (Fibrotargets) focused on cardiac infarct, included to increase the performance of the test. Firalis will collaborate with the SME Scienion (Germany) to translate these novel biomarkers into an actual in vitro diagnostic medical device. For the development and clinical validation of the device, these SMEs will collaborate with university hospitals: the Bad Krozingen Heart Center (Germany) and the leading research institute for genetic and molecular cell biology (IGBMC).
    www.cardio-save.com
    Started in 2014.

    Involved Partners:

  • COLODOR

    COLODOR: Integrated-optical detection of volatile organic compounds using functional polymer coatings
    M-ERA-NET


    Objective:
    Quantitative analysis of volatile organic compounds (VOC) is important for a great variety of applications in consumer health and environment protection. It plays a crucial role in the food industry as frying may cause the release of toxic degradation products. For toxic VOC detection, COLODOR utilizes optical multi-parameter gas sensors. The project objective is the detection of VOCs during hot air cooking as used in modern airfryer cooking equipment. Real-time detection of VOCs will allow optimizing the cooking process to avoid toxic products and at the same time reducing the fat content of the food. Thus, the project will contribute to healthier food preparation and improved consumer well-being.


    Duration: 05/2017 –

    Involved Partners:

  • Lab2Go

    Lab2Go

    Objective:

    The Lab2Go project, co-funded by the European Commission, is a study to determine the value of a point-of-care testing system for measuring cardiac Troponin-I (cTnI) at the patients’ bedside as an aid in the diagnosis of patients with the indications of a Myocardial Infarction (MI). A blood sample can be taken and tested by the doctor, nurse or paramedic to provide cTnI measurement during clinical assessment, rather than having to wait for laboratory results.

    All about the partners and the project at : www.lab2go.nl

    Duration: 31/3/2014-current

    Program type: Lab2Go is part of the European ICT Policy Support Programme

    Involved Partners:

    • Royal Philips
    • SCIENION AG
    • Microsystems (UK) Limited
    • Conworx Technology GmbH
    • Klinikum Nuernberg
    • Medizinische Universität, Innsbruck
    • Hôpital de la Pitié-Salpêtrière, Paris
    • Catharina Ziekenhuis
    • St. George’s Hospital, London
    • Sheffield Teaching Hospitals NHS Foundation Trust
  • Multi-analyte diagnostic methods to detect food pathogens

    Multi-analyte diagnostic methods to detect food pathogens

    Objective:
    Food safety is dependent on timely detection of chemical, biological and/or microbial risk factors. In most cases one factor is determined in a single test (e.g. ELISA). In general, line-based lateral flow tests allow the detection of one factor as well. Both in view of the time needed to perform a test and with respect to high costs this is far from efficient. The food diagnostic sector is looking for multi-analyte diagnostic devices that can be produced at a large scale and in an economically cost-effective way.
    Although some multi-analyte ELISAs are available in the human diagnostic sector, the technology would need several improvements to be applicable in the food sector. The Biomolecular Sensing & Diagnostics group at Wageningen University & Research has built up expertise in multi-analyte lateral flow and ELISA methods. Together with Scienion AG and HAN University of Applied Sciences these diagnostic methods will be further developed to commercially marketable products. Part of the project’s activities is focused on large scale production of multi-analyte diagnostic assays and it is anticipated that this can be implemented by the end of the project. The advantage of these multi-analyte diagnostic methods is that the platforms have been known for many years and, in the case of ELISA, can be fully automated on equipment that is widely available. In addition, low-cost reading equipment is available or will be further developed. Staff time to carry out such multi-analyte diagnostic methods would be the same as for a single-analyte test and, therefore, it is expected that testing can be carried out at much lower cost. This will also drive uptake of testing and encourage the exploitation of diagnostics to improve food safety. The innovation of the new diagnostic devices will also rely on the ultra-low volume dispensing of reagents in a microarray of spots that will enable the simultaneous detection of a range of risk factors in a single sample; 8 x 8 arrays per well in ELISA and 5 x 5 arrays in lateral flow tests. Machine vision technology will be applied to achieve the automated interpretation of multi-analyte diagnostic methods, objectify test outcomes and provide data management. A number of food safety-relevant multi-analyte tests will be developed by the participants and marketed world-wide by Beter Vee/ELDC . The meaning of the innovation for the sector will be the availability of highly efficient, multi-analyte diagnostic tests for the rapid (on-site) detection of food safety risk factors. Furthermore, these new and innovative multi-analyte diagnostic devices can also be adopted by the scientific community to develop multi-analyte assays in other areas. For the society it means increased safety of food products by timely and multi-analyte detection of risk factors. The innovation potential of the new multi-analyte diagnostic devices is high, especially in the human, veterinary, and food safety fields.


    Duration: 01/2017 - 12/2019


    Involved Partners:
    •    Wageningen University & Research
    •    SCIENION AG
    •    HAN University of Applied Sciences
    •    Beter Vee/ ELDC

     

  • LOGIC - Rapid detection of antibiotics in food

    LOGIC
    Nano-array lateral flow diagnostics for the rapid detection of antibiotics in food

    Objective:
    Monitoring antibiotic residues in food is mandatory to ensure consumer protection and to comply with global regulation. The Eurostars project E*LOGIC – Nano-array lateral flow diagnostics for the rapid detection of antibiotics in food – brings together leading expertise for the development of a multiplex rapid immunodiagnostic for the simultaneous detection of 7 key antibiotic targets covering 4 family groups of significant relevance for the food industry (Nitrofurans, Tetracyclines, Nitroimidazoles and Chloramphenicol).

    The objective of this project is to develop a prototype kit for multi-analyte antibiotic screening that is suitable for use in both the seafood and honey industries. E*LOGIC will provide a novel and unique rapid multiplex test which is not currently offered on the market anywhere worldwide. This user-friendly diagnostic tool will allow for results within 10 minutes and with detection limits lower than what is required to meet legislation globally.

    Within the consortium, Wageningen Food & Biobased Research and SCIENION will closely collaborate to develop a miniaturized multiplex lateral flow immunoassay. An array of binding ligands will be printed on a nitrocellulose membrane by using the non-contact sciFLEXARRAYER dispenser. Carbon nanoparticles will be used as detection label. Joint efforts will also include the optimization of several test parameters such as spot volume, concentration of printed proteins, pore size of the nitrocellulose membrane, the amount of carbon nanoparticles label, etc.

    Subsequent to this work package, both partners will establish a large-scale pilot batch production line to economically manufacture the multiplex diagnostics. Automation and in-line quality control will be implemented shifting low throughput R&D production into a feasible production line. Required work will also include the implementation of a vision-guided cutting system ensuring precise positioning of the sliced substrate. SCIENION will configure the sciFLEXARRAYER for processing paper-like supports such as nitrocellulose membranes (hardware and software modifications), and will finally be responsible for process integration, optimization and qualification to achieve a smooth and stable process operation.

    The resulting prototype kit for the surveillance of the food supply chain will provide major advantages for end users in the seafood and honey industries as well as for government reference laboratories and service laboratories – reducing time and cost of product analysis due to its ease of use, fast sample turnaround time and multiple detection of 4 drug families simultaneously.

    Duration: 06/2017 – 05/2020

    Program type:
    Eurostars

    Involved Partners:

     

  • Non-invasive blood test for the detection of Down syndrome

    Non-invasive blood test for the detection of Down syndrome

    Objective:
    Down syndrome or trisomy 21 is a genetic disorder caused by the presence of a third copy of chromosome 21. The Down syndrome is the most common chromosomal abnormality and the most common reason for abortions. Current prenatal screening methods such as ultrasound imaging may indicate the presence of Down syndrome, e.g. by measuring the nuchal fold thickness. However, usually an invasive diagnostic procedure (amniocentesis) is required to distinctly confirm the diagnosis. As amniocentesis bears risks for mother and child, a reliable blood test is needed to clarify the presence of trisomy 21.

    The present R&D project aims at the development of a miniaturized multi-marker assay to determine fetal trisomy 21 specific protein signatures in maternal blood. Assay development involves new biomarkers identified and evaluated in preliminary studies. This novel blood test is faster and more cost-efficient than competing methods.

    SCIENION will develop the printing and immobilization protocols for the antibody probes for the production of the arrays in microtiter plates (sciPLEXPLATES). For detection and data analysis the sciREADER CL2 is used. After the successful development, SCIENION will manufacture the test kit for the global market.


    Duration: 09/2017 – 03/2019

    Program type:
    Zentrales Innovationsprogramm Mittelstand (ZIM)

    Involved Partners:

     

  • Safe Transplant Analytics

    Safe Transplant Analytics

    Development of a universal immunological detection system based on filter membranes

    Objective:
    Worldwide, up to 100,000 organ transplants are performed annually. The patient’s compatibility with the donor organ is a key factor for successful transplantations. The Human leukocyte antigens (HLA) system plays a major role in this context. HLAs are characteristic for an individual and represent the major cause of organ transplant rejections. Currently available diagnostic methods to detect transplant-relevant donor-specific HLA antibodies (DSA) are complicated, time-consuming, costly, or lack sensitivity.

    The Safe Transplant Analytics research project aims at the development of a novel system capable of the multiplex detection of different antibodies in a single sample and thus paving the way for a periodic, secure DSA monitoring. The project will be realized by an analysis system, the universal filter array, in which a multi-parameter analysis in microarray format is performed on special, preferably transparent membranes. SCIENION works on developing methods specifically for microarray spotting on filter membranes, which allow for depositing detection points in a minimal space – with minimal use of expensive antigens or antibodies for multiple analytes. Achieving a high immobilization efficiency while preserving the biofunctionality of the antibodies plays an important role in our work. By printing universal hapten antibodies, the arrays can be adapted to different panels of hapten labeled antigens for specific HLA antibody detection.

    Due to its platform character the analysis system has the potential of versatile application options in other medical fields. The ultimate goal is to develop a reliable and cost-effective test system that improves diagnostic accuracy and that can be easily integrated into the routine of medical standard laboratories.


    Duration: 09/2017 – 08/2020

    Program type:
    Zentrales Innovationsprogramm Mittelstand (ZIM)

    Involved Partners:

     

  • Roll to Roll

    Roll to Roll Biofluidics - Large scale micro-and nanofabrication technologies for bioanalytical devices based on R2R imprinting

    Objective:

    Roll-to-roll (R2R) technologies are mature core processes in manufacturing lines for graphical printing industry. In several other areas (e.g. electronics or optics) R2R techniques are emerging, being expected to notably lower the unit prices of flexible devices. In particular, recently developed roller-based nanoimprinting methods enable unrivalled throughput and productivity for precise fabrication of micro- and nanoscale patterns. Areas that will benefit strongly from adopting such R2R nanoimprinting technologies are microfluidics and lab-on-chip products for diagnostics, drug discovery and food control. Such devices require combined printing of micro- and nanostructures and large quantities at low unit costs. The project R2R Biofluidics aims on the development of a complete process chain for first-time realization of production lines for two selected bioanalytical lab-on-chip devices based on high throughput R2R nanoimprinting in combination with complementary printing and manufacturing technologies. Two types of demonstrators will be fabricated targeting application areas, which would clearly benefit from technology advancement in high volume manufacturing, show large potential for commercial exploitation and adopt current standard formats (microtiter plate and microscope slides). Demonstrator 1 will represent an in-vitro diagnostic chip suitable for point-of-care applications, showing improved sensitivity thanks to imprinted nanoscale optical structures and microfluidic channels. R2R fabrication will further greatly reduce production costs and increase manufacturing capacity with respect to currently used products. Demonstrator 2 will provide a device for improved neuron based high-throughput screening assays in drug development. It will consist of nano– to microstructured, interconnected channels in combination with dedicated biofunctionalized surfaces for alignment and controlled growth of neurons.

     

    The eleven R2R Biofluidics project partners jointly develop a completely new process chain for large scale production of selected lab-on-a-chip devices suitable for point-of-care applications, e.g. for detecting antibiotic-resistant pathogens. The novel chips designed for chemiluminescence detection provide improved sensitivity thanks to imprinted nanoscale optical structures and microfluidic channels. A second subproject aims at developing cell chips containing imprinted cavities and micro- to nanoscale channels for controlled neuron culturing to be applied in high-throughput drug screening. SCIENION’s responsibilities in both subprojects include the surface functionalization of the flexible materials and deposition of biomaterials. For this purpose, SCIENION developed a customized sciFLEXARRAYER which was included in the R2R pilot line for high throughput production of biosensor and cell culture chips.

     

    In September 2018, R2R Biofluidics received the Austrian Fast Forward Award 2018 for the pioneering work to develop novel diagnostics for rapid and reliable pathogen detection. This innovation prize of the Austrian region Styria was awarded to JOANNEUM RESEARCH, coordinator of the R2R Biofluidics project.

    Duration: 02/2015 - 2019

    Program Type: Horizon 2020 - The EU Framework Programme for Research and Innovation (grant number 646260)

    Involved Partners: